Integrating Computation into STEM Curriculum

Calvin Berggren Texas Lutheran University Engaging Pedagogy Conference 17 May 2017

Computation is increasingly important in all STEM fields, especially math, physics, and

engineering

- Computation is now ubiquitous in many fields
- Computational thinking provides a different way of approaching the subject, leading to new insights and deeper understanding
- Computational methods allow one to solve a much wider range of problems
- Computational skills are valuable for a wide variety of careers in and outside your field
- Many professional societies (AAPT, NCTM, AMTE, and others) have made official statements and reports promoting the integration of computation into education in their field

Important skills include

- Fundamental computer skills
 - operating systems
 - file systems
 - coding
 - using computational tools
- Technical computing skills
 - process data
 - visualize data
- Computational skills
 - translate models or algorithms into code
 - write/test/debug code
 - divide problem into manageable computational tasks
 - make meaning of results

Important tools include

- General-purpose programming languages like Python and C++
- Specific packages for these languages like SciPy, Jupyter, and matplotlib (for the Python ecosystem)
- Integrated mathematical computing environments like Mathematica, Maple, and MATLAB
- Spreadsheets like Excel

Physics at TLU is in the process of making a comprehensive update to the major to include computational elements according to best practices

- Revamp PHYS/MATH 371 Mathematical Methods for Scientists and Engineers to include use of computer algebra systems for symbolic calculations
- Revamp the dedicated computational course PHYS 390 Applied Computational Physics I to focus on computational modeling, important computational methods, and algorithms
- Revamp the dedicated computational course PHYS 391 Applied Computational Physics II as a project-based course to focus on practical tools and skills important in industry
- Supplement all existing courses where appropriate
- Computational concentration
 Revamp PHYS / MATH 371

 Computational concentration
 Adding computation to the physics major

 Integrate computation into labs
 Adding computation to the physics major

 Supplement introductory and advanced courses

 Bolster supporting coursework in CSCI
- Best practices indicate that development of computational skills should be integrated into the curriculum, rather than taught as isolated skills.

Sensible opportunities for including computational elements into your courses

- •
- •

Recommendations include

- Considering available tools and standardizing on a limited set sufficient for your needs
- Being strategic about where to add new material to curriculum or where to augment existing material
- Providing scaffolding to help students acclimate to computational ideas and tools, which are likely to be unfamiliar environments

References

 AAPT Recommendations for Computational Physics in the Undergraduate Physics Curriculum. AAPT Undergraduate Curriculum Task Force. October 2016. <u>https://aapt.org/Resources/upload/AAPT_UCTF_CompPhysReport_final_B.pdf</u>